一元二次方程的解法

更新时间: 2024-04-19 16:41:23

一,一元二次方程的解法

1、因式分解法:①因式分解法原理是利用平方和公式(a±b)2=a2±2ab+b2或平方差公式(a+b)(a-b)=a2-b2,把公式倒过来用就是了。②例如x2+4=0这个可以利用平方差公式,把4看成22,就是x2+22 => (x-2)(x+2)再分别解出就可以了。③0乘以任何数都得0,(x-2)要是0那么x=2,(x+2)等于0那么x=-2,这样就可以了。

2、配方法:①配方法不算很难但非常重要,配方法可以求二次函数顶点和坐标,也可以解一元二次方程。第一步,先化为ax2+bx=c的形式。②第二步,取一次项系数b一半的平方,再方程。b=8,先取一半,就是4,然后平方就是16,两边同时加上,就是x2+8x+16=2+16。③变一下形,平方和公式逆用,16看成42,就是(x+4)2=18。④然后直接开平方,x+4=±√18,再移项化简,x=±3√2-4。⑤然后再把解分别写出来就完成了

3、公式法:公式法比较简单,2x2-x=6先化为一般形式ax2+bx+c=0的形式,然后找出a,b,c,再直接套用公式(-b±√b2-4ac)÷2a,Δ=b2-4ac>0有两个不相等的实数根,Δ=b2-4ac=0有两个相等的实数根,解得x1=2 x2=-2/3

二,一元二次方程公式法

1、先判断△=b2-4ac,若△0,原方程的解为:X=((-b)±√(△))/(2a)。

三,一元二次方程解题步骤

一、配方法。搞清楚什么是一元二次方程之后,我们来看第一种解法——配方法:通过配成完全平方形式来解一元二次方程的方法。记住,我们配方的目的是为了降次,也就是说把一个一元二次方程转化为两个一元一次方程来解。

二、公式法。当我们对任意一元二次方程ax+bx+c=0(a≠0)进行使用配方法求解之后,我们发现,最后的方程的两个根x1和x2是有规律的,它们可以固定地表示为下图红色圆圈框着的那个式子。

三、因式分解。针对一些较为特殊的方程,你可以使用这儿方法,通过因式分解,把方程化简为两个一元一次方程的乘积等于0的形式,再根据乘积为0的算术方式(任何数乘以0等于0)使这两个式子分别为0,从而实现降次求解。这个方法并非万能,只针对部分一元二次方程,但是它最快。

四,一元二次方程求根公式

1、x=(-b±√(b^2-4ac))/2a。只含有一个未知数(一元),并且未知数项的最高次数是2(二次)的整式方程叫做一元二次方程。标准形式为:ax2+bx+c=0(a≠0)。

2、公元前2000年左右,古巴比伦的数学家就能解一元二次方程了。他们是这样描述的:已知一个数与它的倒数之和等于一个已给数,求出这个数。他们使x1+x2=b,x1x2=1,x2-bx+1=0,再做出解答。可见,古巴比伦人已知道一元二次方程的解法,但他们当时并不接受负数,所以负根是略而不提的。

如有意见、反馈、侵权或投诉等情况,请联系:

网站客服电话:
邮箱:

我们将会在48小时内给与处理!

版权所有 Copyright ? 2009-2020 10tqo.com

滇ICP备2023005770号-74